Sobre Pitágoras

Cuaderno de bitácora: hace unas semanas estuvimos viendo un documental en el Barco Escuela sobre Pitágoras. El título del documental es Pitágoras, Mucho más que un Teorema. Pertenece a la serie Universo Matemático, una serie documental muy bien hecha que ha sido emitida por Televisión Española. Su creador es Antonio Pérez Sánz, profesor del IES Salvador Dalí de Madrid.

Como se cuenta en el documental, Pitágoras es quizás el más conocido entre todos los matemáticos, por lo menos de nombre, y el teorema de Pitágoras es el que casi todo el mundo cita, si se le pregunta por algún teorema. Recuerdo que a veces, cuando un niño destacaba en matemáticas, se decía de él que era un pitagorín. Éste era el nombre de un personaje de cómic, de un niño muy listo que aparecía en los tebeos de Bruguera de los años sesenta y setenta, y de ahí la palabra ha pasado a algunos diccionarios y se define como estudiante muy aplicado que siempre sabe las respuestas.
Pitágoras vivió en el siglo sexto antes de nuestra era, y nació en la isla griega de Samos. Durante su juventud viajó por diversos lugares del mundo, principalmente Egipto y Oriente Medio. Algunos afirman que también estuvo por Europa y llegó a contactar con los druidas de la cultura céltica. Fue contemporáneo de los Grandes Maestros de las religiones orientales: Siddharta Gautama el Buddha, Lao Zi (Lao Tsé) y Confucio.


Cuando tenía cuarenta años, regresó a Grecia, y tras ver que en Samos no era aceptado, viajó hasta Crotona, al sur de Italia, donde se estableció y fundó la escuela de los Pitagóricos. Tras muchos años durante los que la escuela prosperó y creció, hubo una guerra entre Crotona y Sibaris, y como resultado la escuela fue incendiada. Se dice que Pitágoras logró huir a Metaponte, refugiándose allí hasta su muerte.

Pitágoras fue el creador de tres palabras fundamentales: cosmos, en el sentido de universo ordenado, todo lo que existe, existió o existirá; filosofía, y matemáticas. Como sabemos, la palabra filosofía significa amor a la sabiduría. Cuando se elogiaba a Pitágoras diciéndole que era un sabio, él lo negaba, respondiendo que tan sólo era un filósofo, un amante de la sabiduría.

La palabra matemáticas significa lo que se aprende, lo que se conoce. Para los antiguos pitagóricos, las matemáticas eran la base y la cima del conocimiento, un conocimiento que los conectaba con lo trascendente, con la Divinidad. Los números eran sagrados, y todo en el cosmos estaba basado en números. Filolao, uno de los miembros de la escuela de Pitágoras, decía: "Todas las cosas que pueden ser conocidas tienen número, pues no es posible que sin número nada pueda ser conocido ni concebido".

A Pitágoras y a su escuela se debe la búsqueda del rigor matemático, de basar todos los resultados, principios, teoremas, en demostraciones y razonamientos lógicos que cualquier estudioso puede entender y compartir. A partir de Pitágoras, la matemática se independiza de una base empírica o práctica, convirtiéndose en una ciencia abstracta que existe más allá de la realidad cotidiana del ser humano.

El Teorema de Pitágoras no fue descubierto por él, porque ya se conocía en culturas muy antiguas, como la egipcia, la babilónica o la china. Se dice que Pitágoras fue uno de los primeros en demostrarlo con rigor. Demostraciones de este teorema hay muchísimas, al parecer es el teorema matemático del que más demostraciones distintas se han elaborado. Al principio del siglo XX, Elias Loomis publicó un libro con 367 demostraciones diferentes del teorema. Si alguien quiere conocer algunas de ellas, puede ver esta presentación.

Pitágoras es también responsable de las proporciones matemáticas de la escala musical. Asimismo, en la escuela pitagórica se estudiaban muchas propiedades de los números, que luego han sido profundizadas en épocas posteriores. Se analizaron los números poligonales (triangulares, cuadrados, pentagonales, hexagonales, etc.), los números perfectos, los números amigos, y se descubrieron los números irracionales.

Algunos autores afirman que los pitagóricos rechazaron la existencia de los números irracionales, porque creían que todas las cantidades eran conmensurables: al comparar una cantidad con otra cualquiera, la relación entre ambas siempre se podía expresar como un cociente de números enteros, como un número racional. Pero esto no es cierto, y el propio teorema de Pitágoras conduce rápidamente a uno de los números inconmensurables o irracionales mas sencillos, la raíz cuadrada de dos. Basta tomar un triángulo rectángulo cuyos catetos midan exactamente 1 y 1, entonces la hipotenusa mide la raíz cuadrada de dos. La demostración de que la raíz cuadrada de dos es irracional la pongo a continuación; en ella se utiliza un método de demostración llamado reducción al absurdo, que consiste en suponer que es cierto algo que creemos que será falso, razonar sobre la suposición y llegar a una contradicción, en ese caso lo que habíamos supuesto no puede ser cierto, y por tanto es falso, que es lo que pretendíamos demostrar.

Otro número irracional conocido por los pitagóricos fue el famoso número áureo, o número fi, que aparece como la proporción entre los distintos segmentos definidos en el pentagrama o estrella de cinco puntas. Esta estrella era el símbolo de los pitagóricos.
Para ellos era también sagrado el número diez, simbolizado como un triángulo de puntos distribuidos en orden creciente, un punto en el vértice superior, dos puntos debajo, tres en la siguiente fila y cuatro en la base, formando la tetractys, que resumía en su entidad la estructura del universo. En efecto, un punto representa la dimensión cero, dos puntos definen una recta o dimensión uno, tres puntos no alineados determinan un plano, de dimensión dos, y finalmente, cuatro puntos que no estén en el mismo plano definen el espacio tridimensional. La suma de 1, 2, 3 y 4 da 10.

Pitágoras también estudió los sólidos perfectos, en particular el dodecaedro, y la llamada música de las esferas, y especuló sobre el sistema solar y las órbitas de los planetas.

Para complementar más sobre Pitágoras y su vida, se puede consultar mi artículo Pitágoras, publicado en doDK, y el artículo Los Puntazos de Pitágoras, de Miguel Olvera, publicado también en doDK.

Comentarios

CARLIS ha dicho que…
HOLA PROFESOR EN VERDAD ESTÁN MUY INTERESANTES LOS DOCUMENTOS EN ESPEIAL ESTE DE PITÁGORAS

Entradas populares de este blog

Buscando la Combinación del Candado

La Gran Pirámide de Keops: pi por la raíz de fi es casi cuatro

Tutorial para resolver kakuros