26.12.18

[El Problema de la Semana] El cociente misterioso

A ver qué tal se nos da resolver el siguiente problema:

Un matemático tenía la costumbre de contestar a las preguntas poniendo problemas. Un día le plantearon una división con más de cien cifras, y le preguntaron cuál era el cociente. Después de un rato contestó: "Si en esta división sumamos 6 al divisor y 72 al dividendo, no varían ni el cociente ni el resto".

¿Cuánto vale el cociente?

La solución más abajo.

Esta imagen ha sido extraída y adaptada de una página de David M. Russinoff. En ella podemos ver una igualdad matemática que significa que N es un número desconocido que al dividirse por 25 da de resto 6. La ilustración nos muestra a los soldados del antiguo ejército chino, tal como aparecen en las figuras de terracota de la tumba del primer emperador, distribuidos en cuadros de 5✕5 = 25 soldados. No sabemos cuántos soldados hay en todo el ejército, pero 6 han quedado sueltos, son el resto de la división entre 25.

Solución:

Se trata de una división en la que no conocemos ni el dividendo D, ni el divisor d, ni el cociente c ni el resto r.

Por la regla de la división, "dividendo es igual a divisor por cociente más resto":

D = d · c + r    (igualdad 1)

Pero si sumamos 6 al divisor y 72 al dividendo, el cociente y el resto no varían, por tanto:

D + 72 = (d + 6) · c + r    (igualdad 2)

Hacemos cuentas aplicando la propiedad distributiva:

D + 72 = d · c + 6c + r
 
Usando la igualdad 1 y simplificando:

72 = 6c

Y por tanto:

c = 72/6 = 12

El cociente es 12.

Obsérvese que de la igualdad 1 y de la igualdad 2 sólo podemos averiguar el valor del cociente, que es el que nos pregunta el problema. El dividendo, el divisor y el resto quedan sin poderse resolver.

Nota: Este problema ha sido extraído del libro Problemas a mí 1, de Fernando Corbalán y José María Gairín.

No hay comentarios: