Cuaderno de bitácora: un día de esos de matenavegación se nos ocurrió una idea que ha tenido un resultado interesante y que nos ha permitido descubrir otra propiedad que tienen las proporciones de un folio A4. La idea surge del siguiente problema:
Supongamos que tenemos un cuadrado de lado 1. Queremos inscribir un rectángulo dentro del cuadrado, de forma que el eje mayor del rectángulo (pasa por el centro y es paralelo a los lados más largos) coincida con una de las diagonales del cuadrado, y los cuatro vértices del rectángulo estén sobre los lados del cuadrado. Si el lado mayor del rectángulo también mide 1, ¿cuánto mide el lado menor?
La situación es como se ve en el gráfico.
El cuadrado es ABCD, de lado 1, el rectángulo IJKH está inscrito en el cuadrado, su eje mayor LM coincide con la diagonal del cuadrado AC. Si el lado mayor del rectángulo, HK, mide también 1, ¿cuánto mide el lado menor IH?
El lector puede intentar resolver el problema, que no es difícil. Nosotros lo resolvemos a continuación.
Primero nos fijamos en el triángulo HBK. Se trata de un triángulo isósceles rectángulo, cuya hipotenusa mide 1. Es muy sencillo calcular la longitud de los catetos HB y BK, pues ambos son iguales. Aplicamos el teorema de Pitágoras:
De aquí se deduce que
Como AIH es un triángulo rectángulo isósceles, AH = AI, entonces nuevamente aplicando el teorema de Pitágoras, en este caso podemos calcular la hipotenusa, IH = x. Ya tenemos el valor de la x. Pues bien, si nos fijamos, resulta que juntos el cuadrado de lado 1 y el rectángulo de lados 1 y raíz de 2 menos 1 coinciden en las proporciones de un folio A4. (Véase La raíz cuadrada de 2 en un folio A4)
En conclusión, si tomamos un folio A4, y lo dividimos en un cuadrado y un rectángulo, este último se puede inscribir diagonalmente en el cuadrado. Sugiero al lector que tome un folio y haga la comprobación. A continuación incluimos algunas fotos con el proceso.
Tomamos un folio A4; recordemos que sus lados están en proporción √2:1. |
Doblamos en diagonal, haciendo coincidir el lado menor sobre el lado mayor. |
Cortamos o separamos el rectángulo sobrante. |
Desdoblamos el cuadrado y doblamos el rectángulo por su eje mayor. |
También se puede consultar esta misma construcción en el vídeo: https://youtu.be/x-HMCKHOIVs
No hay comentarios:
Publicar un comentario